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Abstract.

Background: Cerebral microbleeds (CMB) play an important role in neurodegenerative pathology.

Objective: The present study aims to test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) level is
linked to CMBs in elderly people.

Methods: A total of 750 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) who had measurements
of GAP-43 and CMBs were included in the study. According to the presence and extent of CMBs, participants were stratified
into different groups. Regression analyses were used to assess cross-sectional and longitudinal associations between GAP-43
and CMBs.

Results: Participants with CMB were slightly older and had higher concentrations of CSF GAP43. In multivariable adjusted
analyses for age, gender, APOE &4 status, and cognitive diagnoses, higher CSF GAP-43 concentrations were modestly
associated with CMB presence (OR =1.169, 95% CI = 1.001-1.365) and number (3 =0.020, SE = 0.009, p =0.027). Similarly,
higher CSF GAP43 concentrations were accrual of CMB lesions, associated with higher CMB progression (OR =1.231, 95%
CI=1.044-1.448) and number (3 =0.017, SE=0.005, p =0.001) in the follow up scan. In stratified analyses, slightly stronger
associations were noted in male participants, those 65 years and older, carriers of APOE &4 alleles, and with more advanced
cognitive disorders.

Conclusions: CSF GAP-43 was cross-sectionally associated with the presence and extent of CMBs. GAP-43 might be used
as a biomarker to track the dynamic changes of CMBs in elderly persons.
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INTRODUCTION

Cerebral small vessel disease (CSVD) is recog-
nized as a major cause of functional impairment in the
elderly [1, 2], and cerebral microbleeds (CMBs) are
a surrogate marker of CSVD [3]. CMBs were defined
as homogeneous hypointense lesions not exceeding
10mm in the white or gray matter in diameter on
T2*GRE images [4]. And they were associated with
amyloid-B (AB) [5], total tau, phosphorylated tau
[6], soluble E-selectin [7], and tumor necrosis fac-
tor receptor 2 [8]. In the general population, high
microbleed counts were related to an increased risk of
cognitive impairment and dementia [9, 10]. The num-
ber of CMBs can predict adverse cognitive outcomes.
Therefore, more available and reliable markers are
warranted to monitor the status of CMBs in the future.

Growth-associated protein 43 (GAP-43) is a presy-
naptic protein and a marker of synaptic dysfunction
that is involved in neuronal growth and axonal devel-
opment. It was related to increased amyloid and
tangle burden in the amygdala, cortex, and hippocam-
pus [11-15]. GAP-43 is considered to be a sensitive
and early marker of post-ischemic brain injury [11,
16, 17] and traumatic brain injury [18]. There is evi-
dence that cerebrospinal fluid (CSF) GAP-43 level
correlates with the severity of stroke, white matter
lesions, atrophy, as well as infarct size [19]. Previous
studies exploring the associations between GAP-43
and CMBs were scarce. The purposes of the present
study are to explore whether GAP-43 is associated
with CMBs and explore the potential of GAP-43 as
a reliable predictor of CMBs.

METHODS

ADNI study design

Data used in the preparation of this arti-
cle were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission
tomography, other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD).
For up-to-date information, see http://www.adni-
info.org.

Participants in ADNI have been enrolled from over
50ssites across Canada and the United States. The data
we used in this study were collected from Decem-
ber 16, 2005, to May 2, 2019. All the regional ethics
committees have approved the ADNI study. Written
informed consent was given by all study participants.

Participants

In the present cohort, a total of 750 participants,
including cognitively normal (CN, n=236) indi-
viduals, MCI (n=405) subjects, and AD (n=109)
patients, provided baseline CSF GAP-43 data. And
among them, 749 individuals had more than one
follow-up scan (Fig. 1). The participants who simul-
taneously met the following criteria were included:
1) 55-90 years old, 2) a minimum of 6 years of edu-
cation, 3) fluency in speaking English or Spanish, and
4) no obvious neurological disorders other than AD.
The CN participants were defined as having a Mini-
Mental State Examination (MMSE) score of 24 or
higher and a Clinical Dementia Rating (CDR) of 0.
Participants in the MCI group were defined as non-
demented individuals with an MMSE score of 24
or higher, a CDR score of 0.5, preserved activities
of daily living, and objective memory loss mea-
sured by the Wechsler Memory Scale (WMS) Logical
Memory II test. Participants with AD dementia were
defined as those met the Alzheimer’s Disease and
Related Disorders Association criteria for probable
AD and the National Institute of Neurological and
Communication Disorders and Stroke [20] with an
MMSE score of 20 to 26 and a CDR score of 0.5 to
1.0 [21-23].

CSF GAP-43 quantification

CSF GAP-43 was analyzed using an in-
house enzyme-linked immunoassay (ELISA) method
described previously in detail [13]. The ELISA was
implemented using a combination of the mouse
monoclonal GAP-43 antibody NM4 (encapsulated
antibody) and a polyclonal GAP-43 antibody (detec-
tor antibody) which recognizes the C-terminus of
GAP-43. GAP-43 concentration in CSF samples
was calculated via interpolation from the calibrator
curve (4PL weighted 1/Y2). These analyses were
performed by laboratory technicians certified by the
committees. The assay range was 312-20,000 pg/mL.
The repeatability coefficient of variation (CV) %
of quality controls (QC1 and QC2) was 5.5% ver-
sus 11%, and the inter-assay CV% was 6.9% versus


http://adni.loni.usc.edu
http://www.adni-info.org

D. Li et al. / GAP-43 is Related to CMBs 1915
Baseline Attrition
All available GAP-43
data in ADNI database
(N=1268)
Exclued=518
1) No available baseline
CMB data
Analysis
Exclued=1

Association of GAP-43 with

baseline CMB burden
(N=750)

1) Multiple linear regression

model

2) Logistic regression model

Cross-sectional

Association of GAP-43 with
CMB progression

(N=749)
1) Linear mixed effect model
2) Logistic regression model

1) No available longitu-
dinal CMB data

Longitudinal

e

Subgroup analysis and
sensitivity analysis

Fig. 1. A flow diagram of the study.

15.6% during sample runs in the clinical evaluation
study.

CMB quantification

The 3 Tesla MRI protocol consisted of 3D
T1-weighted MPRAGE and T2-weighted GRE
sequences, which has been previously described
(http://adni.loni.usc.edu/methods/documents/mripro
tocols/). CMBs are defined as homogeneous
hypointense lesions in the white or gray matter not
exceeding 10 mm in diameter on T2*GRE images.
The CMBs are best seen in the gradient-echo T2
sequence (hypointense lesions); In the T2, T1, and
FLAIR sequences, they are isointense. The severity
of CMBs was characterized using the Standards
for Reporting Vascular Changes on Neuroimaging
(STRIVE). CMBs were quantified in minimum
deformation template space according to every voxel
(based on corresponding proton density, T1 and
T2 intensities), prior probabilities of CMBs, and
the conditional probabilities of CMBs based on the
presence of CMBs at adjacent voxels. All available
T2*GRE scans of a participant were used for the
rating of individual CMBs. This study included
participants with definite CMBs as cases and those
without definite CMBs as controls at baseline. To
examine the associations of CSF GAP-43 with CMB
progression, we used a four-grade system for CMBs
according to the CMB number, namely grade 0 (0,

n=483), grade 1 (1, n=143), grade 2 (24, n=87),
and grade 3 (>4, n=37) [9]. In addition, CMB
progression was determined by the differences in
counts between scans. In our study, the progression
of CMBs was defined as an increase in CMB number
from the baseline level during the follow-up period.

Statistical analysis

Pairwise comparisons were conducted to test for
intergroup differences using the chi-square test for
categorical variables and the Student -test for con-
tinuous variables. CSF GAP-43 concentrations and
CMB numbers were normalized using the “car”
package in R software in appropriate situations. We
used the Student 7-test to investigate the association
between CSF GAP-43 and CMB presence. One-way
ANOVA is applied to test the association of CSF
GAP-43 with CMB grades.

We conducted logistic regression using the pres-
ence of CMBs as a dependent variable and GAP-43
as an independent variable. Multiple linear regression
was used to investigate the cross-sectional associa-
tions of GAP-43 with the grade and number of CMBs
using GAP-43 level as the exposure factor and the
number and grade of CMBs as the outcome. The
logistic regression model was also used to assess
the effect of GAP-43 on the CMB progression, with
CAP-43 as the exposure and having/not having CMB
progression as the outcome. In addition, we explored
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Demographic characteristics of study participants at baselines

Variables Overall CMB absence CMB presence (n=267)

(n=1750) (n=483) 1 (n=143) 2-4 (n=87) >4 (n=37)
Age,y 72.3 71.5 73.3 73.6 76.4
Gender male, no. (%) 395 (52.7) 243 (61.5) 75 (19.0) 49 (12.4) 28 (7.1)
Educational Level, y 16 16 16 16
APOE &4 carriers, no. (%) 343 (45.7) 212 (61.8) 64 (18.7) 38 (11.1) 29 (8.5)
Baseline diagnosis (CN/MCI/AD) 236/405/109 161/259/63 49/73/21 20/53/14 6/20/11
hypertension 198 (41.0) 61 (42.7) 33 (37.9) 22 (59.5) 314 (41.9)
hyperlipidemia 242 (50.1) 70 (49.0) 50 (57.5) 24 (64.9) 386 (51.5)
hyperglycemia 53 (11.0) 14 (9.8) 12 (13.8) 6(16.2) 85 (11.3)
coronary heart disease 21 (4.3) 9(6.3) 9(10.3) 3(8.1) 42 (5.6)
smoking status 138 (28.6) 28 (19.6) 20 (23.0) 9(24.3) 195 (26.0)
alcohol consumption 12 (2.5) 3.2 2(2.3) 1.7 18 (2.4)
GAP43 (ng/ml) 5236.4 +2846.0 5028.2 +2528.0 5407.5 £3341.5 5587.54+3280.8 6467.1 +3263.6

Categorical variables are reported as numbers and percentages; continuous variables are reported as means + SDs. CMB, Cerebral microb-
leeds; y, years; no., number; APOE, Apolipoprotein E; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease;

GAP-43, growth-associated protein 43.

the effects of GAP-43 on the CMB progression in the
four different grades of CMBs. A linear mixed effect
model was used to evaluate the predictive value of
baseline GAP-43 for the change in CMB number.
The model includes the random intercept and slopes
for time and an unstructured covariance matrix of the
random effects, using the interaction between time (a
year is the unit for time) and GAP-43 as the predictor,
as well as cognitive diagnoses, APOE &4 genotypes
and demographic factors as other covariates. The pri-
mary analyses of the total participants were adjusted
for gender, age (<65 years or > 65 years), education
level, APOE &4 status (having no or one/two APOE
g4 alleles), and baseline cognitive diagnoses (CN,
MCI, and AD). Then we conducted subgroup anal-
yses stratified by age, gender, APOE &4 status, and
cognitive diagnoses.

Since vascular risk factors are frequently con-
founders, we should further take common vascular
risk factors into consideration, such as hyperten-
sion, hyperglycemia, hyperlipidemia, and smoking
[24]. To examine whether the association of GAP-43
with CMB burden was influenced by other health-
related factors, sensitivity analyses after excluding
each variable (hypertension, hyperlipidemia, hyper-
glycemia, smoking status, alcohol consumption, and
coronary heart disease) were conducted. (Supple-
mentary Tables 1-3). Loss of follow-up often occurs
due to the longer observation time in cohort studies. If
there were missing values, we adopted the direct dele-
tion method based on the R language software. All
the statistical analyses were performed using R (ver-
sion 3.5.1) and IBM SPSS Statistics 26. Statistical
significance was defined as p <0.05 for all analyses.

RESULTS

A total of 750 participants (267 with CMBs and
483 without CMBs at baseline) from the ADNI study
were included in our study. After the CMB exami-
nation at baseline, 749 participants had one or more
measurements of CMBs during the follow-up (Fig. 1).
The demographics and GAP-43 data of the partic-
ipants were presented in Table 1. The total study
population had a female proportion of 47.3%, an age
range of 40 to 90 years old (mean=72.3), a mean
number of educational years of 16, and an APOE &4
positive percentage of 45.7%.

CSF GAP-43 concentration and CMBs at
baseline

Our Student t-test revealed a non-significant
positive trend for higher CSF GAP-43 concentra-
tion in participants with CMBs (Cohen’s d=0.147,
p=0.058). In the stratified analyses, the association
between CSF GAP-43 concentration and CMB pres-
ence was significant among the APOE &4 carriers
(Cohen’s d=0.427, p<0.001) (Fig. 2). The results of
one-way ANOVA showed higher GAP-43 concentra-
tion was associated with a higher CMB grade. In the
stratified analyses, the associations remained signif-
icant in the elderly, APOE &4 carriers, females, and
males (Fig. 3).

Using the logistic regression model, we found
that higher CSF GAP-43 concentrations were
associated with CMB presence (OR=1.169, 95%
CI=1.001-1.365, p=0.048) (Fig. 4). In the strat-
ified analyses, the association was still significant



D. Li et al. / GAP-43 is Related to CMBs 1917

>
=]

&
s
I
o
3
i
g
&
hra

P<0.001 P=0.234 P=0.342 P=0.077

&
in

P=0.058

ion)

hznsfnmm«m
=]
I
|
|
(after uszommm)
=]
]
1
]
L]
]
1
|
1
(after hznsformmian)
& 4
1
1
1
1
]
1
(after l::nsfarmmm)
(=2
1
1
il
Ll
1
1
i
1

1 BITILE z

és.s O35 I O35 O35

8 g 1 g g

3-0| [ESCMB sbsence B8l CMB presence 3.0{ ESCMB absence B CMB presence 3.0 ESCMB absence B CMB presence 3.0( ESCMB absence B CMB presence
CMB absence CMB presence APOE g4 APOE g4+ <65 Years >65 Years Female Male

Fig. 2. GAP-43 in the presence/absence of CMBs. Values represent differences in CSF GAP-43 concentration in those with CMBs compared
to those without CMBs. p-values were assessed by student’s ¢ test.

i P=0.010 " P<0.001 " P<0.001 5 P=0.545 P<0.001
P=0.027 P<0.001 _P=0.116 P<0.001 P<0.001 P<0.001
P=0.038 P<0001 _P=0.036 e T P=0680  P=0.205

45 _P=0.760 P=0.088 45 p=0810  P=0.029P=0.233 43 poen P00l 45| P<0.001P=0.710P=0.856 P<0.001
7 _P=0.5% 7 | p-02ssp<ooor BEOTO! = | Tome P01 E LS o k1
3 e —_——— g d i 3
é S g P=0.573 E P=0.629 g
B"-" 'E 44 E“"
¢ ¢ : :
o o ficeg
S S % &
53.5 %35 ‘ 3335 235

% o
30| emoEm e 4 30| mom s 30 @om 1 Emdm 30w 0m 1 mE
R APOEcd~  APOE ebt <65 Years 265 Years Feaale Mele

Fig. 3. GAP-43 in the CMB grades. Boxplots depicting the levels of CSF GAP-43 for each of the four CMB grades (grade 0, grade 1, grade
2, and grade 3). Values represent differences in GAP-43 among the four grades of CMBs. p values in pairwise comparisons were assessed
by student’s 7 test.

4
Logistic regression
3
2
Linear regression (Grades)
1
-log10 (p)
Linear regression (Numbers)

Mixed effect regression (Numbers) ‘ %

0‘6& ,ﬂ’j qﬁ,h*f + Qy '50‘*’&'?r vso‘*'g ¢ & ¥
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Table 2
Results of the associations between GAP-43 and longitudinal CMB
progression

Model OR (95%CTI) p
Logistic

Overall 1.2307 (1.0440-1.4484) 0.0126
<65y 1.1467 (0.7103-1.7949) 0.5560
>65y 1.2598 (1.0565-1.5007) 0.0097
Male 1.2683 (1.0183-1.5804) 0.0334
Female 1.1993 (0.9284-1.5385) 0.1550

APOE &4 noncarriers 1.0677 (0.8462-1.3371) 0.5729

APOE &4 carriers 1.4133 (1.1132-1.7994) 0.0045
CN 1.1246 (0.8035-1.5411) 0.4754
MCI 1.2197 (0.9823-1.5132) 0.0701
AD 1.4249 (0.9299-2.2074) 0.1040

The model was used to assess the effect of GAP-43 on the probabil-
ity of CMB progression, adjusted for gender, age, APOE &4 status,
and baseline cognitive diagnoses. Logistic, Logistic regression;
OR, Odd ratio; APOE, Apolipoprotein E; CN, cognitively normal;
MCI, mild cognitive impairment; AD, Alzheimer’s disease.

in three subgroups of the elderly (OR=1.217,
95% CI=1.032-1.437, p=0.020), APOE &4 carri-
ers (OR=1.585, 95% CI=1.252-2.031, p<0.001),
and AD patients (OR=2.015,95% CI =1.284-3.341,
p=0.004) (Fig. 4). We used a linear regres-
sion model to verify the association and found
that GAP-43 was positively correlated with the
grade ($=0.016, SE=0.007, p=0.036) and number
(B=0.083, SE=0.009, p=0.027) of CMBs (Supple-
mentary Figure 1). In the stratified analyses, these
positive correlations were still significant in the
elderly, APOE &4 carriers, and AD patients (Fig. 4).

Longitudinal associations between CSF GAP-43
and CMBs

The longitudinal data of CMBs in pooled
samples were recorded during a median 4-year
follow-up (range, 0.25-9). The logistic regression
model showed that higher GAP-43 concentrations
were associated with higher CMB progression
(OR=1.231, 95% CI=1.044-1.448, p=0.0147)
in the follow up scan. In the stratified analyses,
the association was still significant in the elderly
(OR=1.260, 95% CI=1.057-1.501, p=0.010),
males (OR=1.269, 95% CI=1.018-1.580,
p=0.033), and the APOE €4 carriers (OR=1.413,
95% CI=1.113-1.799, p=0.005) (Table 2). When
we explored the association in the four different
grades of CMBs, we found a significant association
in grade 3 (OR=1.001, 95% CI=1.000-1.002,
p=0.040).

The pooled results showed that there was an
association between higher GAP-43 concentra-

tion and an increased CMB number (3=0.017,
SE=0.005, p<0.001). In the stratified analyses, the
association remained significant in the subgroups
of the elderly (8=0.017, SE=0.005, p=0.001),
APOE &4 carriers (B =0.022, SE=0.009, p=0.009),
females (3=0.018, SE=0.004, p<0.001), males
(B=0.019, SE=0.007, p=0.011), CN individuals
(8=0.047, SE=0.020, p=0.017), MCI individuals
(8=0.015, SE=0.007, p=0.022), and AD individu-
als (3 =0.089, SE=0.035, p=0.014) (Fig. 4).

DISCUSSION

Our study showed that GAP-43 had a positive
association with baseline CMB burden. As the GAP-
43 increased, the probability of CMB progression
was greater. In cross-sectional stratified analyses, the
association between GAP-43 and baseline CMB bur-
den was still significant in the elderly (=65 years),
APOE &4 carriers, and AD individuals. The logis-
tic regression model showed the association between
higher GAP-43 concentration and the increased
probability of CMB progression was significant in
the elderly, males, and the APOE &4 carriers. A
linear mixed effect model showed that the associa-
tion between higher GAP-43 concentration and an
increased CMB number was significant in the elderly,
APOE &4 carriers, females, males, CN individuals,
MCI individuals, and AD individuals.

The association between GAP-43 and CMB bur-
den may be explained as follows. Microglia, an
innate immune cell, participate in the pathological
changes of CMBs, which can remove amyloid [25]
and infiltrating components from blood [26] and pro-
mote the development of inflammation and axons
[27]. Pro-inflammatory microglia that produce pro-
inflammatory cytokines, reactive oxygen species, and
matrix metalloproteinases may be potential targets
of CMBs [28]. CMBs mark the presence of dif-
fuse vascular and neurodegenerative brain damage
[9]. When the nervous system is damaged, GAP-43
expression increases until complete synaptic connec-
tions are established [29]. GAP-43, which is involved
in axonal growth has been reported to have a possi-
ble relationship with microglia [30-32]. In addition,
greater CMB burden and increased GAP-43 were
often accompanied by inflammation [33-35]. AP
load is a predictor of CMB burden [36, 37]. GAP-
43 increased with the increased AP load, even in the
earliest stages of AP deposition [38]. Previous stud-
ies suggested that GAP-43 and CMB burden were
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both candidate biomarkers for cognitive decline [9,
39], which might contribute to the potential associa-
tion between GAP-43 and CMBs. Our Student #-test
found no significant association between CSF GAP-
43 concentration and CMB presence. However, when
we used the four-grade CMB system, we found sig-
nificant differences in CSF GAP-43 concentration
between the four grades of CMBs, suggesting that
more precise grading of CMBs is needed for inves-
tigation into the associations between GAP-43 and
CMBs. The association between GAP-43 and CMB
burden is still significant in the elderly, APOE &4
carriers, and AD patients. Here are some possible
explanations. CMB burden was significantly asso-
ciated with AP pathology in AD patients [40]. The
prevalence of CMBs was found to increase with age
[41, 42], especially among APOE &4 carriers [41,
43]. Higher CSF GAP-43 levels were observed in
APOE €4 carriers [44], the elderly [38], and AD
patients [13]. GAP-43 may have a better ability to
track the progression of CMBs in the elderly, APOE
&4 carriers, and AD patients. Increased CSF GAP-43
concentration was longitudinally associated with an
elevated probability of CMB progression in the total
population, suggesting GAP-43 could be used to track
the progression of CMBs. Further, in the four-grade
system for CMBs, the association was significant in
grade 3, which might be explained by the fact that
the baseline burden of CSVD is closely related to the
progression of CSVD [45, 46]. GAP-43 plays a pre-
dictive role. GAP-43 may have a better ability to track
progression in grade 3 CMBs than in other grades.
Our study demonstrated the associations between
GAP-43 and CMB burden. Previous findings showed
that CMB was a surrogate marker of cognitive
decline and it marked the presence of both diffuse
vascular and neurodegenerative brain damage [9].
Besides, prior studies provided evidence that intracra-
nial carotid artery calcification was associated with
CMBs [47]. Previous studies also showed that CMBs
could be an alternative marker of cerebrovascular dis-
eases and a prognostic marker for hemorrhagic and
ischemic risks [48, 49], which suggested that CMBs
should be considered a marker for the severity of the
underlying small vessel injuries rather than a spe-
cific marker of only future hemorrhagic risk [50].
Therefore, predicting the further trends of CMBs can
help us identify the cerebrovascular risk. This study
showed that GAP-43 was associated with the proba-
bility of CMBs presence, as well as the number and
grade of CMBs. GAP-43 monitors the severity of
CMBs, which helps people to raise early alertness,

inhibit/prolong the progression of CMBs [51], and
curb the progression of adverse health states.

The novelty of our study was to explore the cross-
sectional and longitudinal associations of GAP-43
and CMBs. However, our study also had some limi-
tations. The findings of our study cannot be used to
prove the role of GAP-43 in CSVD. Relationships
between GAP-43 and other CSVD MRI measures
should be further investigated to explore the possible
role of GAP-43 in CSVD. There is a lack of consider-
ation of CMB topography, which is a relevant factor
when considering the underlying arteriopathy. In the
future, the relevant aspects will need to be supple-
mented. This study mainly discusses the relationship
between CAP-43 and CMB pathology. In the future,
different CMB lesions can be further studied with
larger samples.

Conclusion

Our study showed that CSF GAP-43 was asso-
ciated with the dynamic changes of CMBs in the
elderly. Therefore, GAP-43 might be considered as
a candidate biomarker to monitor the progression of
CMBs.
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